

Midea commecial and VRF with KNX, Serial and IP support IN770AIR00XO000 GATEWAY

USER MANUAL Version 1.0.2 Publication date 2023-05-17

Copyright © 2023 Intesis

Disclaimer

The information in this document is for informational purposes only. Please inform HMS Networks of any inaccuracies or omissions found in this document. HMS Networks disclaims any responsibility or liability for any errors that may appear in this document.

HMS Networks reserves the right to modify its products in line with its policy of continuous product development. The information in this document shall therefore not be construed as a commitment on the part of HMS Networks and is subject to change without notice. HMS Networks makes no commitment to update or keep current the information in this document.

The data, examples and illustrations found in this document are included for illustrative purposes and are only intended to help improve understanding of the functionality and handling of the product. In view of the wide range of possible applications of the product, and because of the many variables and requirements associated with any particular implementation, HMS Networks cannot assume responsibility or liability for actual use based on the data, examples or illustrations included in this document nor for any damages incurred during installation of the product. Those responsible for the use of the product must acquire sufficient knowledge in order to ensure that the product is used correctly in their specific application and that the application meets all performance and safety requirements including any applicable laws, regulations, codes and standards. Further, HMS Networks will under no circumstances assume liability or responsibility for any problems that may arise as a result from the use of undocumented features or functional side effects found outside the documented scope of the product. The effects caused by any direct or indirect use of such aspects of the product are undefined and may include e.g. compatibility issues and stability issues.

Table of Contents

1. Description and Order Codes	1
2. Licensing	2
3. General Information	3
3.1. Intended Use of the User Manual	3
3.2. General Safety Information	3
3.3. Admonition Messages and Symbols	3
4. Overview	5
4.1. Inside the Package	6
4.2. Gateway Main Features	6
4.3. Gateway General Functionality	7
5. Hardware	8
5.1. Mounting	8
5.2. Connection	10
5.2.1. Gateway Connectors	10
5.2.2. Common Connections	12
5.2.2.1. Connecting the Gateway to the Power Supply	12
5.2.2.2. Connecting the Gateway to the Air Conditioning System	
5.2.3. Connection Procedure for Modbus	13
5.2.4. Connection Procedure for KNX	15
5.2.5. Connection Procedure for BACnet	
5.2.6. Connection Procedure for Home Automation	
5.3. LED Indicators	19
5.4. DIP Switches	21
5.5. Push Button	
5.6. Technical Specifications	
5.7. Dimensions	24
6. Available Applications	
6.1. Integration into Modbus Systems	25
6.1.1. Modbus Registers	25
6.2. Integration into KNX Systems	27
6.2.1. KNX Signals	
6.3. Integration into BACnet Systems	29
6.3.1. BACnet Objects	
6.4. Integration into Home Automation Systems	
6.4.1. Home Automation Signals	31
7. Late Configuration: Change the Gateway's Protocol	32

1. Description and Order Codes

IN770AIR00xO000 Gateway

 $Modbus^{\$}, KNX^{\$}, BACnet^{\$}, and\ Home\ Automation^{\$}\ gateway\ for\ Midea^{\$}\ air\ conditioning\ systems$

ORDER CODE	LEGACY ORDER CODE		
IN770AIR00xO000 ¹	INBACMID004I000		
¹ The x stands for S, M, or L, depending on the license you have			
purchased. (See the next section).			

NOTE

The order code may vary depending on the product seller and the buyer's location.

USER MANUAL Version 1.0.2 Page 1 of 34

2. Licensing

Distribution license(s) for the IN770AIR00xO000 gateway:

Order Code	License	Maximu	ım AC units	
Order Code	Ind		Outdoor units	
IN770AIR00SO000	Small	16	0	
IN770AIR00MO000	Medium	64	0	

NOTE

The order code may vary depending on the product seller and the buyer's location.

Page 2 of 34 USER MANUAL Version 1.0.2

3. General Information

3.1. Intended Use of the User Manual

This manual contains the main features of this Intesis gateway and the instructions for its appropriate installation, configuration, and operation.

The contents of this manual should be brought to the attention of any person who installs, configures, or operates this gateway or any associated equipment.

Keep this manual for future reference during the installation, configuration, and operation.

3.2. General Safety Information

IMPORTANT

Follow these instructions carefully. Improper work may seriously harm your health and damage the gateway and/or any other equipment connected to it.

Only technical personnel, following these instructions and the country legislation for installing electrical equipment, can install and manipulate this gateway.

Install this gateway indoors, in a restricted access location, avoiding exposure to direct solar radiation, water, high relative humidity, or dust.

All wires (for communication and power supply, if needed) must only be connected to networks with indoor wiring. All communication ports are considered for indoor use and must only be connected to SELV circuits.

Disconnect all systems from their power source before manipulating and connecting them to the gateway.

Use SELV-rated NEC class 2 or limited power source (LPS) power supply.

Supply always a correct voltage to power the gateway. See Technical Specifications (page 23).

Respect the expected polarity of power and communication cables when connecting them to the gateway.

3.3. Admonition Messages and Symbols

DANGER

Instructions that must be followed to avoid an imminently hazardous situation that, if not avoided, will result in death or severe injury.

WARNING

Instructions that must be followed to avoid a potentially hazardous situation that, if not avoided, could result in death or severe injury.

CAUTION

Instruction that must be followed to avoid a potentially hazardous situation that, if not avoided, could result in minor or moderate injury.

IMPORTANT

Instruction that must be followed to avoid a risk of reduced functionality and/or damage to the equipment or to avoid a network security risk.

USER MANUAL Version 1.0.2 Page 3 of 34

NOTE

Additional information which may facilitate installation and/or operation.

TIP

Helpful advice and suggestions.

NOTICE

Remarkable Information.

Page 4 of 34 USER MANUAL Version 1.0.2

4. Overview

This document describes the available applications for this IN770AIR00xO000 gateway.

IMPORTANT

This document assumes that the user is familiar with these technologies.

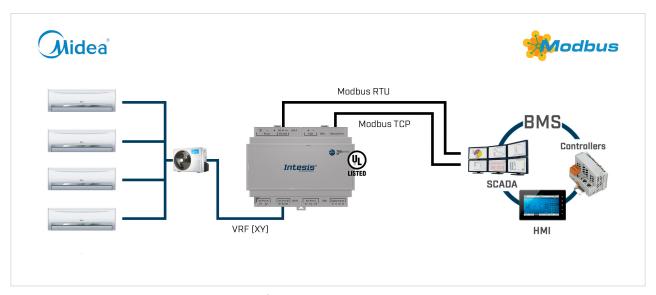


Figure 1. Integration of Midea AC systems into Modbus installations

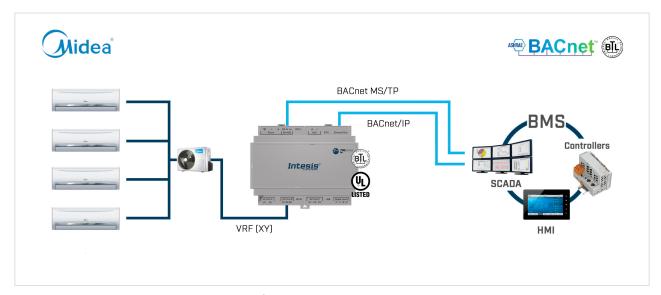


Figure 2. Integration of Midea AC systems into BACnet installations

USER MANUAL Version 1.0.2 Page 5 of 34

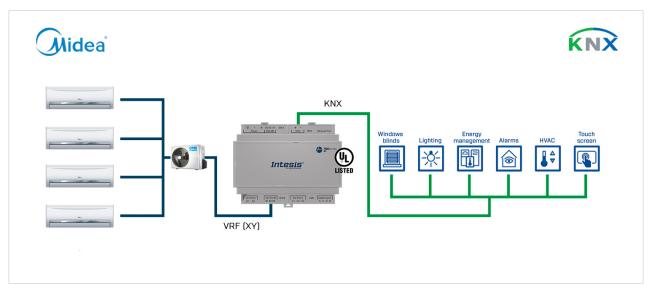


Figure 3. Integration of Midea AC systems into KNX installations

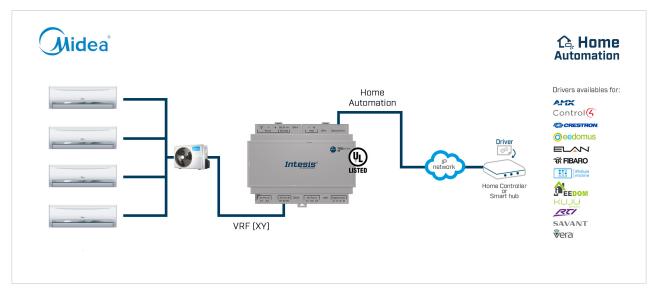


Figure 4. Integration of Midea AC systems into Home Automation installations

4.1. Inside the Package

Items included:

- Intesis IN770AIR00x0000 gateway
- USB Mini-B type to USB A type cable
- Installation sheet

4.2. Gateway Main Features

- Several applications available: Configurable for BACnet/IP and MS/TP, Modbus TCP and RTU, KNX, and Home Automation communication protocols.
- Late configuration: Change between applications easily.
- Scan function: Find the devices connected to the air conditioning bus.
- Specific signals to monitor outdoor units.
- 2 x DIP switches for the EIA-485 connector termination and polarization configuration.
- 14 LEDs indicate the operating status for both the gateway and the communication bus.

Page 6 of 34 USER MANUAL Version 1.0.2

- DIN rail and wall mounting case.
- Accredited with the main certifications for electronic equipment.
- Multiple ports for serial and TCP/IP communication:
 - Green pluggable terminal block for EIA-485 (3 poles)
 - Orange pluggable terminal block for KNX (2 poles)
 - Ethernet
 - Green pluggable terminal block for binary inputs (4 poles)
 - USB Mini-B type 2.0 port for connection to the PC
 - Green pluggable terminal block for AC connection (2 poles)
 - Green pluggable terminal block for AC connection (3 poles)
 - Green pluggable terminal block for AC connection (3 poles)

NOTE

Depending on the AC bus, some of these AC connection ports are not used.

4.3. Gateway General Functionality

With this Intesis IN770AIR00xO000 gateway, you can easily integrate Midea air conditioning (AC) systems into an installation based on Modbus TCP, Modbus RTU, KNX, BACnet/IP, BACnet MS/TP, or Home Automation. To do so, the gateway acts as a server device of the installation itself, accessing all signals from each air conditioner unit and controlling the whole AC network.

The gateway is continuously polling the AC network, storing in its memory the current status of every signal you want to track and serving this data to the installation when requested. Also, when a signal status changes, the gateway sends a write telegram to the installation, waits for the response, and performs the corresponding action.

A lack of response from a signal activates a communication error, allowing you to know which signal from which AC unit is not correctly working.

USER MANUAL Version 1.0.2 Page 7 of 34

5. Hardware

5.1. Mounting

IMPORTANT

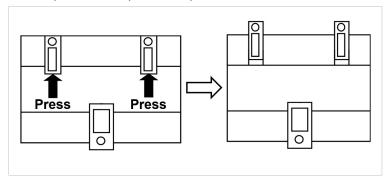
Before mounting, please ensure that the chosen installation place preserves the gateway from direct solar radiation, water, high relative humidity, or dust.

IMPORTANT

Maximum mounting height: below 2 meters (6.5 feet).

NOTE

Mount the gateway on a wall or over a DIN rail. We recommend the DIN rail mounting option, preferably inside a grounded metallic industrial cabinet.



IMPORTANT

Ensure the gateway has sufficient clearances for all connections when mounted. See <u>Dimensions</u> (page 24).

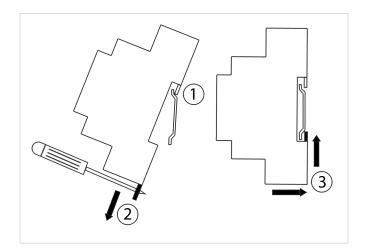
Wall mounting

1. Press the top side mobile clips in the rear panel until you hear a *click*.

2. Use the clip holes to fix the gateway on the wall using screws.

NOTE

Use M3 screws, 25 mm (1") length.


3. Make sure the gateway is firmly fixed.

Page 8 of 34 USER MANUAL Version 1.0.2

DIN rail mounting

Keep the clips down in their original position.

- 1. Fit the gateway's top side clips in the upper edge of the DIN rail.
- 2. Use a screwdriver or similar to pull the bottom clip down.
- 3. Fit the low side of the gateway in the DIN rail and let the clip switch back to its original position, locking the gateway to the rail.
- 4. Make sure the gateway is firmly fixed.

USER MANUAL Version 1.0.2 Page 9 of 34

5.2. Connection

CAUTION

Disconnect all systems from the power source before manipulating and connecting them to the gateway.

5.2.1. Gateway Connectors

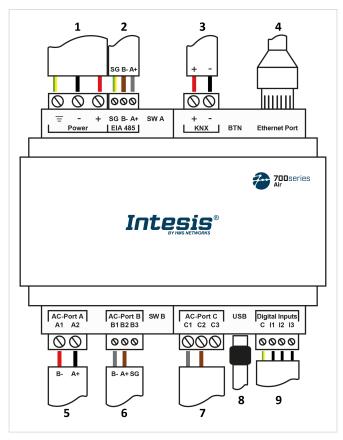


Figure 5. General view of all gateway connectors

- 1. Power supply: 12 to 36 VDC / 24 VAC
- 2. Port EIA 485: For RS 485 serial bus connection
- 3. Port KNX: Exclusive to the KNX bus
- 4. Ethernet Port: For TCP/IP and Home Automation connection
- 5. AC-Port A: Not used

- 6. AC-Port B: Midea bus (XY)
- 7. AC-Port C: Not used
- 8. USB: Connection with the PC for configuration purposes
- 9. Binary inputs: Dry contact (optional)

NOTE

You can also use the **Ethernet Port** to connect the gateway and the PC for configuration purposes.

NOTICE

The common connectors (those used for all applications), specific connectors (those used for each application), and the connection procedures are deeply explained in the following sections.

NOTE

Mount the gateway in the desired installation site before wiring.

Page 10 of 34 USER MANUAL Version 1.0.2

IMPORTANT

Use solid or stranded wires (twisted or with ferrule).

Wire cross-section/gauge for all wire connectors:

• 1 core: 0.5 to 2.5 mm² (24 to 11 AWG).

• 2 cores: 0.5 to 1.5mm² (24 to 15 AWG).

• 3 cores: not permitted.

Summary tables

BMS Protocol	Port EIA 485	Port KNX	Ethernet	
BACnet	BACnet MS/TP	(Not used)	BACnet/IP and Console	
Modbus	Modbus RTU	(Not used)	Modbus TCP and Console	
KNX	(Not used)	KNX	Console	
Home Automation	(Not used)	(Not used)	Home Automation and Console	

AC Manufacturer	urer Port A		Port C	Ethernet	
Midea	(Not used)	XY	(Not used)	(Not used)	

Bus connectors pinout					
EIA 485 Port A Port B Port C					
B- (NEG pole)	A1 (NEG pole)	B1 (NEG pole)	C1 (NEG pole)		
A+ (POS pole)	A2 (POS pole)	B2 (POS pole)	C2 (POS pole)		
SG (Ground)		B3 (Ground)			

NOTE

To know more about each port's specifications, see Technical Specifications (page 23).

USER MANUAL Version 1.0.2 Page 11 of 34

5.2.2. Common Connections

5.2.2.1. Connecting the Gateway to the Power Supply

The power supply connector is a green pluggable terminal block (3 poles) labeled as **Power**.

IMPORTANT

- Use SELV-rated NEC class 2 or limited power source (LPS) power supply.
- Connect the gateway's ground terminal to the installation grounding.
- A wrong connection may cause earth loops that can damage the Intesis gateway and/or any other system equipment.

Apply the voltage within the admitted range and of enough power:

• For DC: 12 .. 36 VDC (+/-10%), Max: 250 mA

• For AC: 24 VAC (+/-10 %), 50-60 Hz, Max: 127 mA

Recommended voltage: 24 VDC, Max: 127 mA

IMPORTANT

- When using a DC power supply: Respect the polarity labeled on the power connector for the positive and negative wires.
- When using an AC power supply: Ensure the same power supply is not powering any other device.

5.2.2.2. Connecting the Gateway to the Air Conditioning System

Connect the Midea air conditioning network bus (XY) to the gateway using the B1 and B2 poles of the AC-Port B.

INCOMPATIBILITY

The gateway cannot be connected when a central controller module (CCM) is present in the bus.

IMPORTANT

Observe polarity

NOTICE

See the wiring diagram in the gateway connectors figure: General view of all gateway connectors (page 10).

Page 12 of 34 USER MANUAL Version 1.0.2

5.2.3. Connection Procedure for Modbus

NOTE

Remember to check the Common Connections (page 12).

For Modbus TCP:

1. Connect the Modbus TCP Ethernet cable to the gateway's **Ethernet Port**.

IMPORTANT

Use a straight Ethernet UTP/FTP CAT5 or higher cable.

IMPORTANT

If communicating through the LAN of the building, contact the network administrator and make sure traffic on the used port is allowed through all LAN paths.

NOTE

When commissioning the gateway for the first time, DHCP will be enabled for 30 seconds. After that time, the default IP address 192.168.100.246 will be set.

For Modbus RTU:

1. Connect the Modbus RTU communication cable to the gateway's **EIA-485** port.

IMPORTANT

Observe polarity.

IMPORTANT

Remember the characteristics of the standard EIA-485 bus:

- Maximum distance of 1200 meters (0.75 miles).
- Maximum of 32 devices connected to the bus.
- A termination resistor of 120 ohms (Ω) is needed at each end of the bus. The gateway has an internal bus biasing circuit already incorporating the termination resistor. It can be enabled using the DIP switch block (SW A) dedicated to the EIA-485 port:

Position 1

- ON: 120 Ω termination active.
- OFF: 120 Ω termination inactive.

Position 2 and 3

- ON: Polarization active.
- OFF: Polarization inactive.

For further details, see DIP Switches (page 21).

IMPORTANT

If the termination resistor is enabled and you install the gateway at an end of the bus, do not install an additional termination resistor at that end.

USER MANUAL Version 1.0.2 Page 13 of 34

2. Use the supplied USB Mini-B type to A type cable to connect the gateway, through its **USB** port, to a PC to configure it with Intesis MAPS.

NOTE

For Modbus RTU only, you can use the **Ethernet Port** to connect the gateway and the PC instead.

NOTICE

Find all you need to know about the gateway configuration and Intesis MAPS in the IN770AIR00xO000 Gateway configuration guide.

NOTICE

See the wiring diagram in the gateway connectors figure: General view of all gateway connectors (page 10)

Page 14 of 34 USER MANUAL Version 1.0.2

5.2.4. Connection Procedure for KNX

NOTE

Remember to check the Common Connections (page 12).

1. Connect the KNX TP communication cable to the gateway's **KNX** port.

IMPORTANT

Observe polarity.

2. Use the supplied USB Mini-B type to A type cable to connect the gateway, through its **USB** port, to a PC to configure it with Intesis MAPS.

NOTE

You can use the **Ethernet Port** to connect the gateway and the PC instead.

NOTICE

Find all you need to know about the gateway configuration and Intesis MAPS in the IN770AIR00xO000 Gateway configuration guide.

NOTICE

See the wiring diagram in the gateway connectors figure: General view of all gateway connectors (page 10)

USER MANUAL Version 1.0.2 Page 15 of 34

5.2.5. Connection Procedure for BACnet

NOTE

Remember to check the Common Connections (page 12).

For BACnet/IP:

- 1. Connect the BACnet/IP Ethernet cable to the gateway's **Ethernet Port**. The correct cable to use depends on where the gateway is connected:
 - Connecting directly to a BACnet/IP device: use a crossover Ethernet UTP/FTP CAT5 or higher cable.
 - Connecting to a hub or switch of the LAN of the building: use a straight Ethernet UTP/FTP CAT5 or higher cable.

IMPORTANT

When commissioning the gateway for the first time, DHCP will be enabled for 30 seconds. After that time, the default IP address 192.168.100.246 will be set.

IMPORTANT

If communicating through the LAN of the building, contact the network administrator and make sure traffic on the used port is allowed through all LAN paths.

For BACnet MS/TP:

1. Connect the BACnet MS/TP communication cable to the gateway's EIA-485 port.

IMPORTANT

Observe polarity.

IMPORTANT

Remember the characteristics of the standard EIA-485 bus:

- Maximum distance of 1200 meters (0.75 miles).
- Maximum of 32 devices connected to the bus.
- A termination resistor of 120 ohms (Ω) is needed at each end of the bus. The gateway has an internal bus biasing circuit already incorporating the termination resistor. It can be enabled using the DIP switch block dedicated to the EIA-485 port:

Position 1

- ON: 120 Ω termination active.
- OFF: 120 Ω termination inactive.

Position 2 and 3

- ON: Polarization active.
- OFF: Polarization inactive.

For further details, see DIP Switches (page 21).

IMPORTANT

If the termination resistor is enabled and you install the gateway at one end of the bus, do not install an additional termination resistor at that end.

Page 16 of 34 USER MANUAL Version 1.0.2

2. Use the supplied USB Mini-B type to A type cable to connect the gateway, through its **USB** port, to a PC to configure it with Intesis MAPS.

NOTE

For BACnet MS/TP only, you can use the **Ethernet Port** to connect the gateway and the PC instead.

NOTICE

Find all you need to know about the gateway configuration and Intesis MAPS in the IN770AIR00xO000 Gateway configuration guide.

NOTICE

See the wiring diagram in the gateway connectors figure: General view of all gateway connectors (page 10)

USER MANUAL Version 1.0.2 Page 17 of 34

5.2.6. Connection Procedure for Home Automation

NOTE

Remember to check the Common Connections (page 12).

1. Connect the Home Automation Ethernet cable to the gateway's Ethernet Port.

IMPORTANT

Use a straight Ethernet UTP/FTP CAT5 or higher cable.

IMPORTANT

If communicating through the LAN of the building, contact the network administrator and make sure traffic on the used port is allowed through all LAN paths.

NOTE

When commissioning the gateway for the first time, DHCP will be enabled for 30 seconds. After that time, the default IP address 192.168.100.246 will be set.

2. Use the supplied USB Mini-B type to A type cable to connect the gateway, through its **USB** port, to a PC to configure it with Intesis MAPS.

NOTICE

Find all you need to know about the gateway configuration and Intesis MAPS in the IN770AIR00xO000 Gateway configuration guide.

NOTICE

See the wiring diagram in the gateway connectors figure: General view of all gateway connectors (page 10)

Page 18 of 34 USER MANUAL Version 1.0.2

5.3. LED Indicators



Figure 6. Gateway layout

LED	Color	Description		
Top side				
LED 1 (PWR)	Green	Power on (not programmable)		
LED 2 (ERR)	Red	Blinking: Hardware error		
LED 3	Green	485 Tx (RS485 for BACnet or Modbus)		
LED 4	Yellow	485 Rx (RS485 for BACnet or Modbus)		
LED 5	Green	KNX Port Tx		
LED 6	Yellow	KNX Port Rx		
		KNX: Programming mode on		
BUTTON LED	Green	BACnet: BACnet link established		
		Modbus and Home Automation: Not used		
LED 7	Green	Ethernet link established		
LED 8	Yellow	Ethernet speed		
		Bottom side		
LED 9	Green	AC-Port A Tx (HBS)		
LED 10	Yellow	AC-Port A Rx (HBS)		
LED 11	Green	AC-Port B Tx (RS485)		
LED 12	Yellow	AC-Port B Rx (RS485)		
LED 13	Green	AC-Port C Tx (UFO-SLQ)		
LED 14	Yellow	AC-Port C Rx (UFO-SLQ)		

USER MANUAL Version 1.0.2 Page 19 of 34

NOTE

LEDs are hidden behind the four frontal labeled covers. These covers are assembled by pressure, so you just need to pull them to remove them.

Page 20 of 34 USER MANUAL Version 1.0.2

5.4. DIP Switches

See figure: Gateway layout (page 19)

1: DIP switch A (SW A).

2: DIP switch B (SW B).

Each DIP switch is dedicated to a 485 port, and its function is to activate or deactivate the termination resistor and the polarization of each port:

Position			Description	
1	2	3	Description	
1	Х	Х	120 $Ω$ termination active	
V	Х	Х	120 Ω termination inactive (default position)	
Х	\uparrow	1	Polarization active (default position)	
Х	\downarrow	\downarrow	Polarization inactive	

USER MANUAL Version 1.0.2 Page 21 of 34

5.5. Push Button

Find the push button at the top side, between the KNX and the Ethernet connectors.

See Figure Gateway layout (page 19)

NOTE

The button is hidden and only accessible using a thin object like a paper clip.

Common functionality:

Reset factory settings

- 1. Push the button.
- 2. Power on the gateway.
- 3. Wait four seconds.
- 4. Release the button.

Functionalities depending on the current project:

BACnet

• Push the button to send an I-Am message to all BACnet ports.

KNX

• Push the button to switch between normal mode and programming mode.

Page 22 of 34 USER MANUAL Version 1.0.2

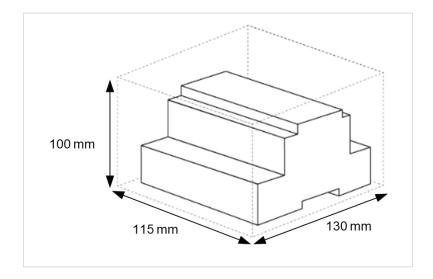
5.6. Technical Specifications

	Plactic type PC (III 04 V 0) Color Light (Crow BAL 703E		
0	Plastic, type PC (UL 94 V-0). Color: Light G	•		
Case	Net dimensions (dxwxh): 90x106x58 mm			
	Recommended space for installation (dxv	·		
Mounting	Wall: M3 25mm (1") length screws. Secure mounting: below 2 meters (6 feet)			
	DIN rail (recommended mounting) EN60715 TH35			
	Solid wires or stranded wires (twisted or	with ferrule)		
	Per terminal:			
Wires (for power supply and low-	1 core: 0.5 to 2.5mm ² (24 to 11 AWG)			
voltage signals)	2 cores: 0.5 to 1.5mm ² (24 to 15 AWG) 3 cores: not permitted)		
	5 cores. not permitted			
	For distances longer than 3.05 meters (10 feet), use class 2 cables			
	1 x Green pluggable terminal block (3 po	les)		
Power	12 to 36 VDC +/-10%, Max.: 250 mA			
	24 VAC +/-10% 50-60 Hz, Max.: 127 m/	Α		
	Recommended: 24 VDC			
Ethernet	1 x Ethernet 10/100 Mbps RJ45			
	1 x Green pluggable terminal block (3 pol	les)		
Port EIA 485	SGND (Reference ground or shield)			
	1500VDC isolation from other ports			
Port KNX	1 x Orange pluggable terminal block (2 po	oles): A, B		
	AC-Port A (serial, 2 poles): Not used			
AC Ports	AC-Port B (serial, 3 poles): AC bus connec	ction (XY)		
	AC-Port C: (serial, 3 poles): Not used			
	2 x Run (Power/Error)	2 x Ethernet Link/Speed		
LEDs	2 x Port EIA-485 TX/RX	2 x AC-Port A TX/RX		
	2 x Port KNX TX/TR	2 x AC-Port B TX/RX		
	1 x Button indicator	2 x AC-Port C TX/RX		
	1 x Green pluggable terminal block (4 po	les)		
Binary inputs	I1, I2, I3, and Common			
	1500 VDC isolation from other ports			
Console port	USB Mini-B type 2.0 compliant			
	1500 VDC isolation			
	2 x DIP switch blocks for EIA-485 serial po	ort configuration:		
	Position 1:			
SW A	On: 120 Ω termination active			
SW B	Off: 120 Ω termination inactive			
	Position 2 and 3: On: Polarization active			
	Off: Polarization active			
Push button	Refer to the user manual			
Operational	Celsius: 0 60°C			
temperature	Fahrenheit: 32 140ºF			
Operational humidity	5 to 95%. No condensation			
Protection	IP20 (IEC60529)			
	<u> </u>			

USER MANUAL Version 1.0.2 Page 23 of 34

5.7. Dimensions

• Net dimensions (DxWxH)


Millimeters: 90 x 106 x 58 mm

Inches: 3.5 x 4.2 x 2.3"

• Clear space for installation (DxWxH)

Millimeters: 130 x 115 x 100 mm

Inches: 5.1 x 4.5 x 3.9"

Page 24 of 34 USER MANUAL Version 1.0.2

6. Available Applications

6.1. Integration into Modbus Systems

6.1.1. Modbus Registers

NOTICE

This part is common for Modbus RTU and TCP.

Functions to read Modbus registers:

- 03 Read Holding Registers.
- 04 Read Input Registers.

Function to write Modbus registers

• 06 Single Multiple Holding Registers.

Modbus register contents are expressed in most significant bit (MSB) .. less significant bit (LSB).

The following tables list all available Modbus registers for the gateway.

NOTICE

Read/write parameter terminology:

- R: Read-only register.
- **W**: Write-only register.
- RW: Read and write register.

Table 1. Global signals

Register name	Possible values	R/W
On (all units)	1-Set the units On	Trigger
Off (all units)	1-Set the units Off	Trigger
Operation Mode Auto (all units)	1-Set Auto Mode	Trigger
Operation Mode Heat (all units)	1-Set Heat Mode	Trigger
Operation Mode Dry (all units)	1-Set Dry Mode	Trigger
Operation Mode Fan (all units)	1-Set Fan Mode	Trigger
Operation Mode Cool (all units)	1-Set Cool Mode	Trigger
Fan Speed Auto (all units)	1-Set Fan Speed Auto	Trigger
Fan Speed Low (all units)	1-Set Fan Speed Low	Trigger
Fan Speed Mid (all units)	1-Set Fan Speed Mid	Trigger
Fan Speed High (all units)	1-Set Fan Speed High	Trigger
Swing On (all units)	1-Set Swing On	Trigger
Swing Off (all units)	1-Set Swing Off	Trigger
Temperature Setpoint (x10) (all units)	17 30°C / 62 86°F	Trigger
Operating mode force On (all Units)	1-Force Operating mode	Trigger
Operating mode force Off (all Units)	1-Unforce Operating mode	Trigger
Remote control lock On (all units)	1-Lock remote control	Trigger

USER MANUAL Version 1.0.2 Page 25 of 34

Register name	Possible values	R/W
Remote control lock Off (all units)	1-Unlock remote control	Trigger

Table 2. Individual units signals

Register name	Possible values	Modbus address formula	R/W
On/Off	0-Off, 1-On	(Unit adress×100)+0	R, W
Operation Mode	0-Heat, 1-Cool, 2-Fan, 3-Dry, 4-Auto	(Unit adress×100)+1	R, W
Temperature Setpoint (x10°C)	17 30ºC / 62 86ºF	(Unit adress×100)+2	R, W
Fan Speed	0-Auto, 1-Low, 2-Med, 3-High	(Unit adress×100)+3	R, W
Vane Position Swing	0-Swing Off, 1-Swing On	(Unit adress×100)+4	R, W
Room Temperature (x10)	-20 100ºC / -4 212ºF	(Unit adress×100)+5	R
Unit Error Code	0-No Error, X-Error (0 255)	(Unit adress×100)+6	R
Communication Error IU	0-No error, 1-Error	(Unit adress×100)+7	R
Remote Control lock	0-Unlock, 1-Lock	(Unit adress×100)+8	R, W
Force Operating mode	0-No force, 1-Force	(Unit adress×100)+9	R, W
Consumption Yesterday	n Wh / n kWh	(Unit adress×100)+10	R
Consumption Today	n Wh / n kWh	(Unit adress×100)+11	R
Consumption Total	n Wh / n kWh	(Unit adress×100)+12	R
Consumption Yesterday Heat	n Wh / n kWh	(Unit adress×100)+13	R
Consumption Today Heat	n Wh / n kWh	(Unit adress×100)+14	R
Consumption Total Heat	n Wh / n kWh	(Unit adress×100)+15	R
Consumption Yesterday Cool	n Wh / n kWh	(Unit adress×100)+16	R
Consumption Today Cool	n Wh / n kWh	(Unit adress×100)+17	R
Consumption Total Cool	n Wh / n kWh	(Unit adress×100)+18	R

Page 26 of 34 USER MANUAL Version 1.0.2

6.2. Integration into KNX Systems

6.2.1. KNX Signals

The following tables list all available KNX signals for this gateway.

NOTE

Physical Address: The gateway supports (P/S) and (P/I/S) format levels.

NOTICE

Communication object flags:

- **Ri (Read on initialization)**: The gateway requests this signal's updated data after an initialization instead of waiting for a change in the signal.
- R: The KNX system can read this signal.
- W: The KNX system can write this signal.
- T: The KNX system receives a telegram when this signal changes its value.
- **U**: This signal's data is updated after a reboot of either the gateway or the bus.

Table 3. Global signals

Object name	Possible values	DPT	Flags
Control_On/Off (all units)	0-Off, 1-On	1.001-DPT_Switch (1bit)	W
Control_Operating Mode (all units)	0-Auto, 1-Heat, 3-Cool, 9-Fan, 14-Dry	20.105-DPT_HVACContrMode (1byte)	W
Control_Operating Mode (all units)	0-Auto, 1-Heat, 2-Dry, 3-Fan, 4-Cool	5.x (1byte)	W
Control_Operating Mode (all units)	0-Cool, 1-Heat, 2-Fan, 3-Dry, 4-Auto	5.x (1byte)	W
Control_Fan Speed (all units)	0-Low, 1-Mid, 2-High, 3-Powerful	5.x (1byte)	W
Control_Fan Speed AUTO (all units)	1-Set auto fan; 0-Stop auto fan	1.001-DPT_Switch (1bit)	W
Control_Setpoint (all the units)	17 30ºC / 62 86ºF	9.001/9.027-DPT_Value_Temp (2byte)	W
Control_Operating Mode force (all the units)	0-No force, 1-Force	1.002 DPT_Bool (1bit)	W
Control_Remote Lock/Unlock (all the units)	0-Unlock, 1-Lock	1.002 DPT_Bool (1bit)	W

Table 4. Individual units signals

Object name	Possible values	DPT	Flags
Status_CommError	0-No error, 1-Error	1.005-DPT_Alarm (1bit)	R, T
Control_On/Off	0-Off, 1-On	1.001-DPT_Switch (1bit)	Ri, W, U
Status_On/Off	0-Off, 1-On	1.001-DPT_Switch (1bit)	R, T
Control_Operation mode	0-Auto, 1-Heat, 3-Cool, 9-Fan, 14-Dry	20.105-DPT_HVACContrMode (1byte)	Ri, W, U
Status_Operation mode	0-Auto, 1-Heat, 3-Cool, 9-Fan, 14-Dry	20.105-DPT_HVACContrMode (1byte)	R, T
Control_Operation mode	0-Auto, 1-Heat, 2-Dry, 3-Fan, 4-Cool	5.x (1byte)	Ri, W, U
Status_Operation mode	0-Auto, 1-Heat, 2-Dry, 3-Fan, 4-Cool	5.x (1byte)	R, T
Control_Operation mode	0-Cool, 1-Heat, 2-Fan, 3-Dry, 4-Auto	5.x (1byte)	Ri, W, U
Status_Operation mode	0-Cool, 1-Heat, 2-Fan, 3-Dry, 4-Auto	5.x (1byte)	R, T
Control_Mode Cool/Heat	0-Cool, 1-Heat	1.100-DPT_Heat/Cool (1bit)	Ri, W, U
Status_Mode Cool/Heat	0-Cool, 1-Heat	1.100-DPT_Heat/Cool (1bit)	R, T
Control_Auto mode	1-Set auto mode	1.001-DPT_Switch (1bit)	Ri, W, U
Status_Auto mode	1-Auto mode active, 0-Auto mode not active	1.001-DPT_Switch (1bit)	R, T
Control_Heat mode	1-Set heat mode	1.001-DPT_Switch (1bit)	Ri, W, U
Status_Heat mode	1-Heat mode active, 0-Heat mode not active	1.001-DPT_Switch (1bit)	R, T
Control_Cool mode	1-Set cool mode	1.001-DPT_Switch (1bit)	Ri, W, U

USER MANUAL Version 1.0.2 Page 27 of 34

Object name	Possible values	DPT	Flags
Status_Cool mode	1-Cool mode active, 0-Cool mode not active	1.001-DPT_Switch (1bit)	R, T
Control_Fan mode	1-Set fan mode	1.001-DPT_Switch (1bit)	Ri, W, U
Status_Fan mode	1-Fan mode active, 0-Fan mode not active	1.001-DPT_Switch (1bit)	R, T
Control_Dry mode	1-Set dry mode	1.001-DPT_Switch (1bit)	Ri, W, U
Status_Dry mode	1-Dry mode active, 0-Dry mode not active	1.001-DPT_Switch (1bit)	R, T
Control_Temperature setpoint	17 30ºC / 62 86ºF	9.001/9.027-DPT_Value_Temp (2byte)	Ri, W, U
Status_Temperature setpoint	17 30ºC / 62 86ºF	9.001/9.027-DPT_Value_Temp (2byte)	R, T
Control_Fan speed enumerated	0-Low, 1-Medium, 2-High	5.x (1byte)	Ri, W, U
Status_Fan speed enumerated	0-Low, 1-Medium, 2-High	5.x (1byte)	R, T
Control_Fan speed scaling	Thresholds (0 49%; 50 82%; 83 100%)	5.001-DPT_Scaling (1byte)	Ri, W, U
Status_Fan speed scaling	Thresholds (33%; 66%; 100%)	5.001-DPT_Scaling (1byte)	R, T
Control_Fan speed low	1-Set fan speed low	1.001-DPT_Switch (1bit)	Ri, W, U
Status_Fan speed low	1-Speed low active, 0-Speed low not active	1.001-DPT_Switch (1bit)	R, T
Control_Fan speed medium	1-Set fan speed medium	1.001-DPT_Switch (1bit)	Ri, W, U
Status_Fan speed medium	1-Speed medium active, 0-Speed medium not active	1.001-DPT_Switch (1bit)	R, T
Control_Fan speed high	1-Set fan speed high	1.001-DPT_Switch (1bit)	Ri, W, U
Status_Fan speed high	1-Speed high active, 0-Speed high not active	1.001-DPT_Switch (1bit)	R, T
Control_Fan speed Man/Auto	0-Manual; 1-Auto	1.001-DPT_Switch (1bit)	Ri, W, U
Status_Fan speed Man/Auto	0-Manual; 1-Auto	1.001-DPT_Switch (1bit)	R, T
Control_VanesUD position swing	0-Swing off; 1-Swing on	1.001-DPT_Switch (1bit)	Ri, W, U
Status_VanesUD position swing	0-Swing off; 1-Swing on	1.001-DPT_Switch (1bit)	R, T
Status_AC ambient temperature	0 30ºC / 32 86ºF	9.001/9.027-DPT_Value_Temp (2byte)	R, T
Control_KNX ambient temperature	ºC / ºF	9.001/9.027-DPT_Value_Temp (2byte)	Ri, W, U
Status_Unit error code	0-No Error, n-Error (0 255)	8.x (2 byte)	R, T
Control_Remote control lock	0-Unlock, 1-Lock	1.002 DPT_Bool (1bit)	Ri, W, U
Status_Remote control lock	0-Unlock, 1-Lock	1.002 DPT_Bool (1bit)	R, T
Control_Force operating mode	0-No force, 1-Force	1.002 DPT_Bool (1bit)	Ri, W, U
Status_Force operating mode	0-No force, 1-Force	1.002 DPT_Bool (1bit)	R, T
Status_Consumption Yesterday	n Wh / n kWh	13.010 active energy (Wh) (4byte)	R, T
Status_Consumption Today	n Wh / n kWh	13.010 active energy (Wh) (4byte)	R, T
Status_Consumption Total	n Wh / n kWh	13.010 active energy (Wh) (4byte)	R, T
Status_Consumption Yesterday Heat	n Wh / n kWh	13.010 active energy (Wh) (4byte)	
Status_Consumption Today Heat	n Wh / n kWh	13.010 active energy (Wh) (4byte)	R, T
Status_Consumption Total Heat	n Wh / n kWh	13.010 active energy (Wh) (4byte)	
Status_Consumption Yesterday Cool	n Wh / n kWh	13.010 active energy (Wh) (4byte)	R, T
Status_Consumption Today Cool	n Wh / n kWh	13.010 active energy (Wh) (4byte)	
Status_Consumption Total Cool	n Wh / n kWh	13.010 active energy (Wh) (4byte)	R, T

NOTE

The default unit for the consumption signals is Wh, but you can set it in KWh instead. If so, the DPT number changes from 13.010 to 13.013.

Page 28 of 34 USER MANUAL Version 1.0.2

6.3. Integration into BACnet Systems

NOTICE

You can see the Protocol Implementation Conformance Statement (PICS) document on https://www.intesis.com/docs/bacnet-client-pic-statement-770

6.3.1. BACnet Objects

NOTICE

This part is common for BACnet MS/TP and BACnet/IP.

Input object types:

• Binary input.

Output object types:

- Binary output.
- Multistate output.
- Analog output.

The following tables list all available BACnet objects for this gateway.

Table 5. Global signals

Object name	Possible values	Object type	Object instance
On/Off (all units)	0-Off, 1-On	4-Binary Output	0+0
Mode (all units)	1-Heat, 2-Cool, 3-Fan, 4-Dry, 5-Auto	14-Multistate Output	0+0
FanSpeed (all units)	1-Auto, 2-Low, 3-Med, 4-High	14-Multistate Output	0+1
Vane Position (all units)	0-Swing Off, 1-Swing On	4-Binary Output	0+1
Temperature Setpoint (all units)	17 30°C / 62 86°F	1-Analog Output	0+0
Operating mode force (all Units)	0-No force, 1-Force	4-Binary Output	0+2
Remote control lock (all units)	0-Unlock, 1-Lock	4-Binary Output	0+3

Table 6. Individual units signals

Object name	Possible values	Object type	Object instance
UXX_On/Off_S	0-Off, 1-On	3-Binary Input	(U[164]*100)+0
UXX_On/Off_C	0-Off, 1-On	4-Binary Output	(U[164]*100)+0
UXX_Mode_S	1-Heat, 2-Cool, 3-Fan, 4-Dry, 5-Auto	13-Multistate Input	(U[164]*100)+0
UXX_Mode_C	1-Heat, 2-Cool, 3-Fan, 4-Dry, 5-Auto	14-Multistate Output	(U[164]*100)+0
UXX_Setpoint_S	17 30ºC / 62 86ºF	0-Analog Input	(U[164]*100)+0
UXX_Setpoint_C	17 30ºC / 62 86ºF	1-Analog Output	(U[164]*100)+0
UXX_FanSpeed_S	1-Auto, 2-Low, 3-Med, 4-High	13-Multistate Input	(U[164]*100)+1
UXX_FanSpeed_C	1-Auto, 2-Low,3-Med, 4-High	14-Multistate Output	(U[164]*100)+1
UXX_Vane position_S	0-Swing Off, 1-Swing On	3-Binary Input	(U[164]*100)+1
UXX_Vane position_C	0-Swing Off, 1-Swing On	4-Binary Output	(U[164]*100)+1
UXX_Room Temperature	-35 92.5 ºC / -31 198.5 ºF	0-Analog Input	(U[164]*100)+1
UXX_Unit Error Code	0-No Error, X-Error(0255)	0-Analog Input	(U[164]*100)+2
UXX_Communication Error IU	0-No error, 1-Error	3-Binary Input	(U[164]*100)+2
UXX_Remote control lock_S	0-Unlock, 1-Lock	3-Binary Input	(U[164]*100)+3

USER MANUAL Version 1.0.2 Page 29 of 34

Object name	Possible values	Object type	Object instance
UXX_Remote control lock_C	0-Unlock, 1-Lock	4-Binary Output	(U[164]*100)+2
UXX_Operating mode force_S	0-No force, 1-Force	3-Binary Input	(U[164]*100)+4
UXX_Operating mode force_C	0-No force, 1-Force	4-Binary Output	(U[164]*100)+3
UXX_Consumption_Yesterday_S	n Wh / n kWh	0-Analog Input	(U[164]*100)+3
UXX_Consumption_Today_S	n Wh / n kWh	0-Analog Input	(U[164]*100)+4
UXX_Consumption_Total_S	n Wh / n kWh	0-Analog Input	(U[164]*100)+5
UXX_Consumption_Yesterday_Heat_S	n Wh / n kWh	0-Analog Input	(U[164]*100)+6
UXX_Consumption_Today_Heat_S	n Wh / n kWh	0-Analog Input	(U[164]*100)+7
UXX_Consumption_Total_Heat_S	n Wh / n kWh	0-Analog Input	(U[164]*100)+8
UXX_Consumption_Yesterday_Cool_S	n Wh / n kWh	0-Analog Input	(U[164]*100)+9
UXX_Consumption_Today_Cool_S	n Wh / n kWh	0-Analog Input	(U[164]*100)+10
UXX_Consumption_Total_Cool_S	n Wh / n kWh	0-Analog Input	(U[164]*100)+11

Page 30 of 34 USER MANUAL Version 1.0.2

6.4. Integration into Home Automation Systems

6.4.1. Home Automation Signals

The following tables list all available Home Automation signals for this gateway.

NOTE

- SET: Command used to control the indoor unit. It is sent by the client.
- **CHN**: Command used to get notifications of changes in the status of a specific function of the gateway. It is sent spontaneously by the gateway itself.
- **GET**: Command used to get the status of a specific function. It is sent by the client.

To know more about the Home Automation protocol, see the Protocol specifications manual.

Table 7. Indoor units signals

Name	Possible values	acNum ¹	Commands supported
On/Off	ON/OFF		SET/CHN/GET
Operation Mode	HEAT/COOL/FAN/DRY/AUTO		SET/CHN/GET
Fan Speed	1/2/3/4/5/AUTO	See the note below SET/CH SET/CH CHN/G CHN/G	SET/CHN/GET
Vane Position	Stop/Swing		SET/CHN/GET
Temperature Setpoint (x10)	°C / °F		SET/CHN/GET
AC Ambient Temperature (x10)	-35 92.5ºC / -31 198.5ºF		CHN/GET
Unit Error code	0-No Error, X-Error		CHN/GET
Error IU	OK/ERR		CHN/GET

NOTE

¹ This index must be set accordingly to the Unit ID Index.

For outdoor units, the acNum value must be the same than the minimum indoor unit associated in the CONFIGURATION section.

USER MANUAL Version 1.0.2 Page 31 of 34

7. Late Configuration: Change the Gateway's Protocol

Reconfiguring the gateway with a different protocol is very easy:

- 1. Connect the gateway to the PC and open the configuration tool Intesis MAPS.
- 2. Select the new template you need.
- 3. Click **Next** or double-click the template in the list.
- 4. A message will pop up, asking if you want to save the project currently loaded in the gateway.
- 5. Click **Yes** or **No**, depending on your needs.
- 6. Configure the needed parameters and signals for your new project.
- 7. Send the configuration to the gateway.

NOTE

For a complete gateway configuration guide, please refer to the Intesis MAPS User manual for IN770AIR00xO000.

Page 32 of 34 USER MANUAL Version 1.0.2

8. Error Codes

NOTE

These error codes are the same for all applications.

Error code	Error in RC	Error description	
-200	N/A	Overconsumption error in XYE bus	
-100	N/A	License error / Indoor units not supported by current license	
65535 (-1)	N/A	Communication error between the gateway and the AC unit	
0	N/A	No active error	
1	EO	Phase error or error in the phase sequence	
2	E1	Communication error	
3	E2	T1 sensor error	
4	E3	T2A sensor error	
5	E4	T2B sensor error	
6	E5	T3 temperature and T4 temperature Compressor discharge temperature sensors error	
7	E6	Zero cross error detection	
8	E7	EEPROM memory error	
9	E8	Indoor fan speed out of control	
10	E9	Communication error between the main panel and the visualization panel	
11	EA	Compressor's current overload error (4 times)	
12	EB	Inverter module protection	
13	EC	Cooling error	
14	ED	Outdoor unit fault protection	
15	EE	Water level fault detection	
16	EF	Other errors	
101	P0	Vaporizer temperature protection	
102	P1	Thawing or cold air protection	
103	P2	Condenser high temperatures protection	
104	Р3	Compressor temperature protection	
105	P4	Evacuation duct temperature protection	
106	P5	Discharge high pressure protection	
107	P6	Discharge low pressure protection	
108	P7	Current overload or underload protection	
109	P8	Compressor's current overload protection	
110	P9	Reserved	
111	PA	Reserved	
112	РВ	Reserved	
113	PC	Reserved	
114	PD	Reserved	
115	PE	Reserved	
116	PF	Other protection measures	

IMPORTANT

These error codes may differ depending on the specific AC unit model.

USER MANUAL Version 1.0.2 Page 33 of 34

NOTE

If you detect a non-listed error code, please contact Midea technical support.

Page 34 of 34 USER MANUAL Version 1.0.2